Math Virtual Learning

 Algebra 1 S1
Graphing system of linear inequalities

May 5, 2020

Algebra I S1
Lesson: May 5, 2020

Objective/Learning Target:

Students can graph systems of linear inequalities given in standard form.

Graph and find the solution:

$$
\begin{gathered}
y \geq-x-1 \\
y>-4 x+2
\end{gathered}
$$

BELL RINGER-solution

Take one inequality at a time and graph. Let's take $y \geqslant-x-1$ and split this step into two:

$$
\begin{gathered}
\text { Remember: } \\
y=m x+b \\
m=\text { slope } \\
b=y \text {-intercept }
\end{gathered}
$$

Your "starting point" is the y-intercept. Find this value on the y-axis and plot a point. So, our starting point is at -1 on the y-axis.

To find more points, we have to use the slope, which is $\frac{r i s e}{r u n}$. The slope in this example is $\frac{-1}{1}$ which means down one, right one. So, let's go back to our y-intercept and plot some more points.

BELL RINGER-solution

Step Three: Connect the points with a SOLID LINE if the inequality is \leqslant (less than or equal to) or \geqslant (greater than or equal to) and a DOTTED LINE if the inequality is (greater than). This first example is a solid line. So we have:

BELL RINGER-solution

Now, we have to do this all over again with the second inequality!

$$
y>-4 x+2
$$

This time our y-intercept is +2 and our slope is $\frac{-4}{1}$ which means down 4 and right 1 . It is also a DOTTED LINE. So we now have:

BELL RINGER-solution

Step Four: We have to shade in part of our graph since there is more than one value that will work in our system of inequalities. For (greater than) or \geqslant (greater than or equal to), we shade above the line (think of the line as a slide and that's "above"). In our example, both inequalities are the "above" inequalities so our shading must be above BOTH lines. Our final graph should look like:

STANDARD FORM

VIDEO: Graphing a linear system of inequalities in standard form
https://www.youtube.com/watch?v=5WC0umC16s4

- Graph the solution set of the system.

$$
\begin{aligned}
& x+y \geq 3 \\
& x-y>1
\end{aligned}
$$

- First, we graph $x+y \geq 3$ using a solid line.
Choose a test point (0,0) and shade the correct plane.
- Next, we graph $x-y>1$ using a dashed line.
Choose a test point and shade the correct plane.

Inspiring Greatness

The solution set of the system of equations is the region shaded both red and green, including part of the line $\boldsymbol{x}+\boldsymbol{y} \geq 3$.

PRACTICE PROBLEMS

Name

Assignment

Date \qquad Period \qquad
Sketch the solution to each system of inequalities.

1) $\begin{aligned} & 3 x+7 y<35 \\ & 12 x+7 y>-28\end{aligned}$

2) $x-y \geq-4$

$$
7 x+3 y>-18
$$

PRACTICE PROBLEMS

3) $7 x+2 y \leq 8$
$7 x+2 y \geq-2$

4) $14 x-3 y \leq-24$

$$
14 x-3 y \geq 3
$$

5) $\begin{aligned} & x-2 y>-6 \\ & x \geq 2\end{aligned}$

6) $x-2 y \geq-8$
$11 x-6 y<24$

 PRACTICE PROBLEMS-SOLUTIONS

1)

2)

PRACTICE PROBLEMS-SOLUTIONS

3)

5
 PRACTICE PROBLEMS-SOLUTIONS

6)

